
Mitigation of Aerosol Emissions from Solvent-based Post-Combustion CO₂ Capture Systems

Junior Nasah, Harry Feilen Institute for Energy Studies, **University of North Dakota**

Background – Aerosol Formation

- > Solvent-based scrubbers are leading technology for CC capture from coal-fired power plants
 - Solvents such as MEA, MDEA and PIP are used to stri CO_2 from flue gas
 - Their high volatility results in emission to atmosphere
 - Emissions are due to fine particles (aerosols) too sma to be captured by existing counter-measures (wate wash and de-misters)
- Aerosol formation occurs primarily from ultra-fin particulate via condensation of alkali and SO₃

Top: MEA Emissions Increase with Increase in Soot levels; Bottom: Emissions increase with increase in H₂SO₄ levels P. Khakharia et al. / International Journal of Greenhouse Gas Control 19 (2013) 138–144 Srivats Srinivasachar and Teagan Nelson

Envergex LLC

Pro	ject Obje	ctive	s and N	letho	dol	ogy
> Object	ive:					
	inate formati					
type	s (particulate	, alkali	and acid)	with >9	98%	efficio
	gate fouling ation cycling	of	pre-heate	er duri	'ng	low
Metho	dology					
 Alka 	li Species – Pi	revent	formatior	n in boile	er	
• SO ₃	Species & Pa improve perf	rticula	te Species	s – neut	traliz	
	Phase I	Expe	rimenta	al Setu	up	
An alka	mbustor li sorbent ado nt levels inve		U			•
 An alka 3 sorbe Fine an Pressur Institut 	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 stag	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut 	li sorbent add nt levels inve d Ultra-fine μ e Impactor e (SoRI) 5 stag D50% (μm)	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut Stage # 13 	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 sta D50% (µm) 10	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut Stage # 13 12	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 stag D50% (µm) 10 6.8	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut Stage # 13 12 11 	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 stag D50% (µm) 10 6.8 4.4	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut Stage # 13 12	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 sta D50% (µm) 10 6.8 4.4 2.5	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut Stage # 13 12 11 10 9 	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 stag D50% (µm) 10 6.8 4.4	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut Stage # 13 12 11 	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 sta (SoRI) 5 sta 10 6.8 4.4 2.5 1.6 1	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut Stage # 13 12 11 10 9 	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 sta (SoRI) 5 sta 10 6.8 4.4 2.5 1.6 1 0.65	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut Stage # 13 12 11 10 9 	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 stag 0.8 4.4 2.5 1.6 1 0.65 0.4	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut Stage # 13 12 11 10 9 	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 sta 6.8 4.4 2.5 1.6 1 0.65 0.4 0.26	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut Stage # 13 12 11 10 9 	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 stag D50% (μm) 10 6.8 4.4 2.5 1.6 1 0.65 0.4 0.26 0.17	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati
 An alka 3 sorbe Fine an Pressur Institut Stage # 13 12 11 10 9 	li sorbent add nt levels inve d Ultra-fine p e Impactor e (SoRI) 5 sta 6.8 4.4 2.5 1.6 1 0.65 0.4 0.26	stigate articu (DLPI)	ed: Low, m late collect and a El	nid and cted usin	high ng D	ekati

13 Stage DLPI showing aerodynamic cut-points for each stage

0.03

David Stadem, Steve Benson Microbeam Technologies Inc.

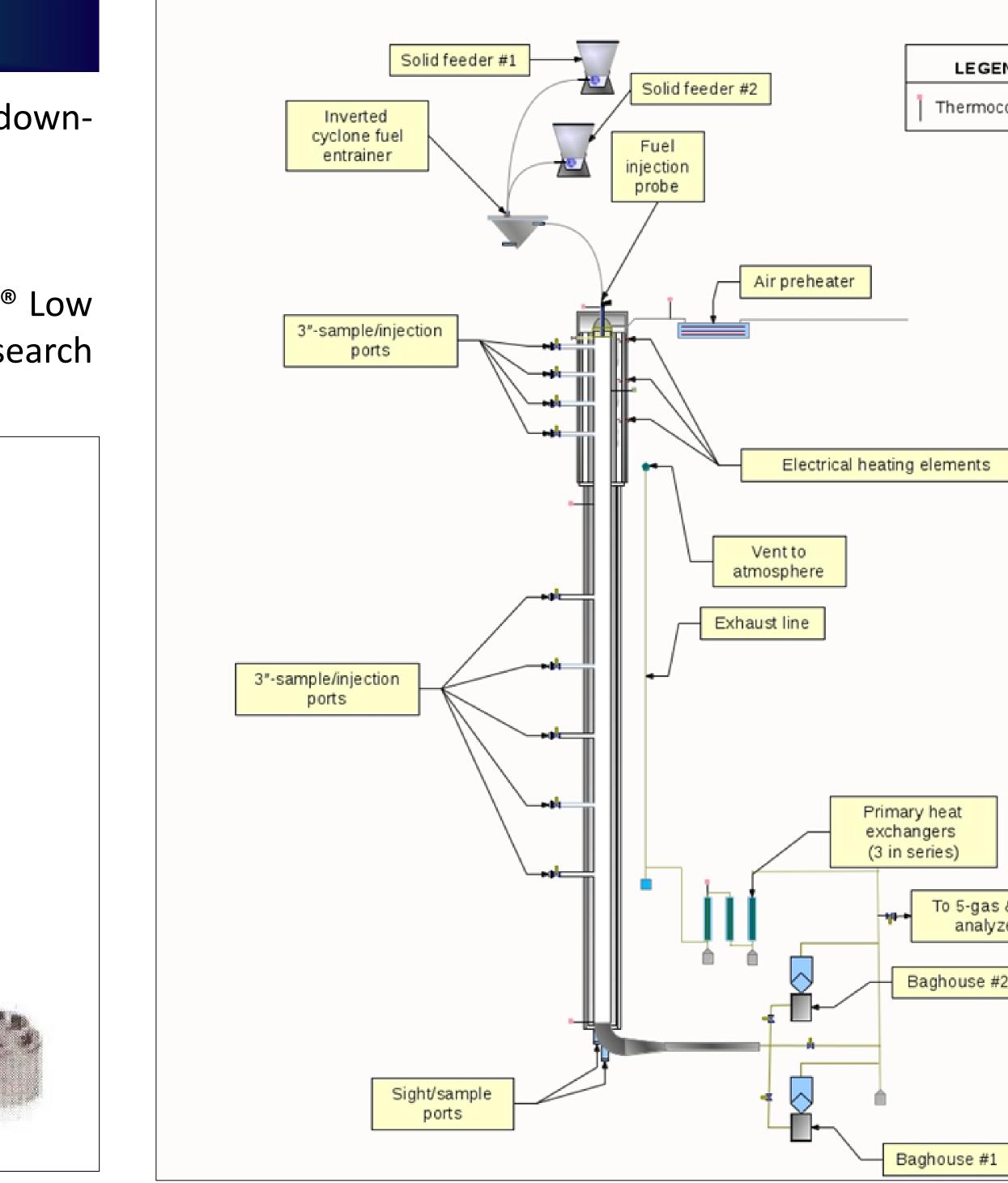
Cyclone

Stage

1

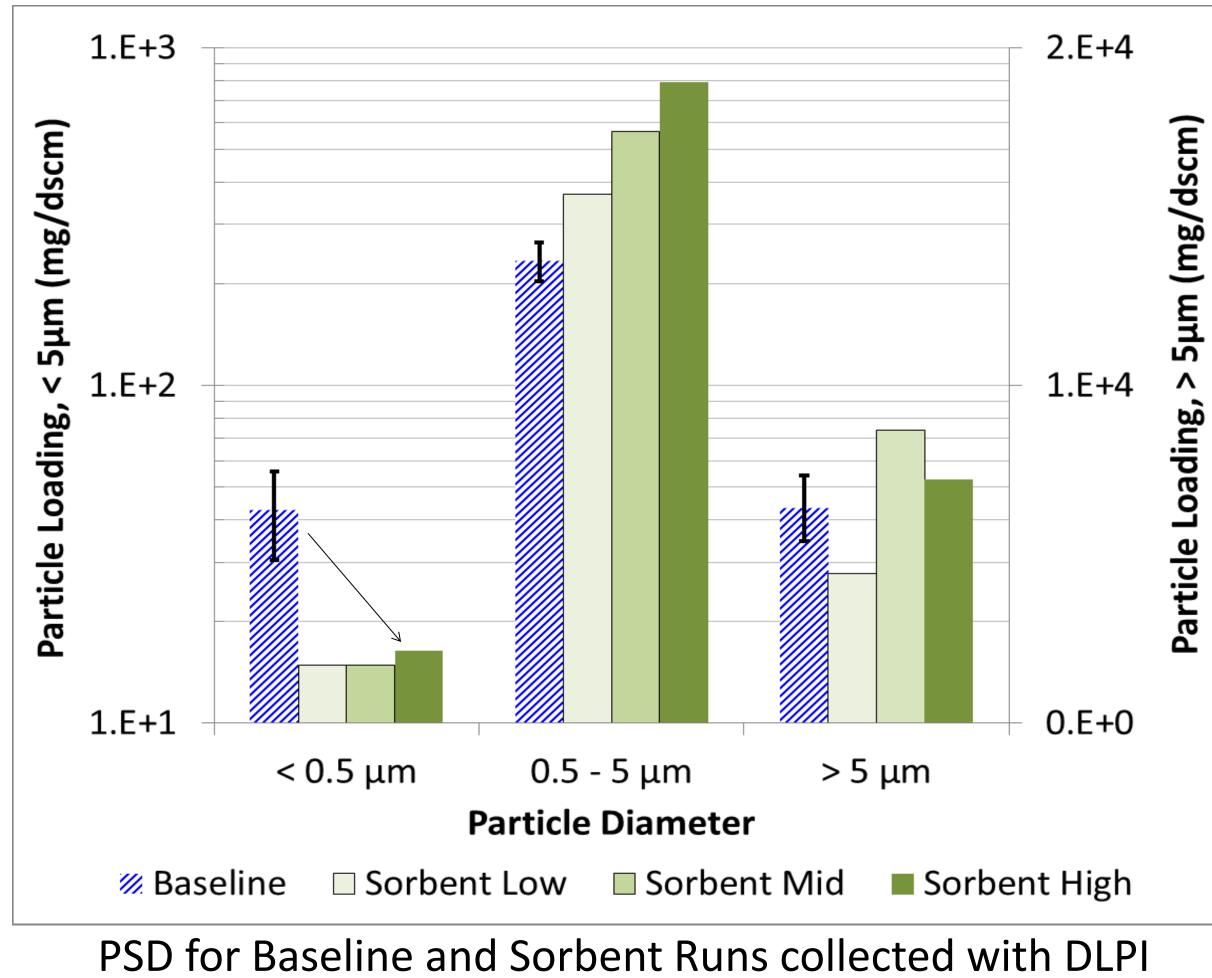
2

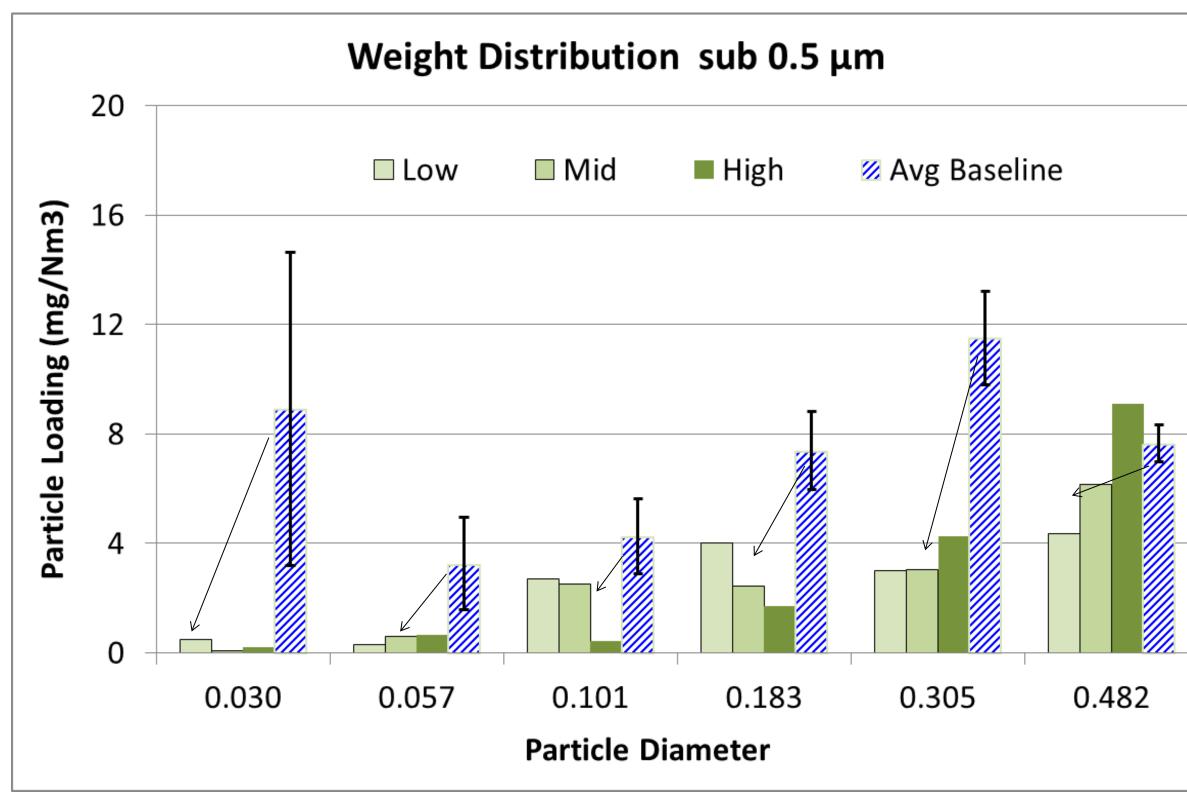
3

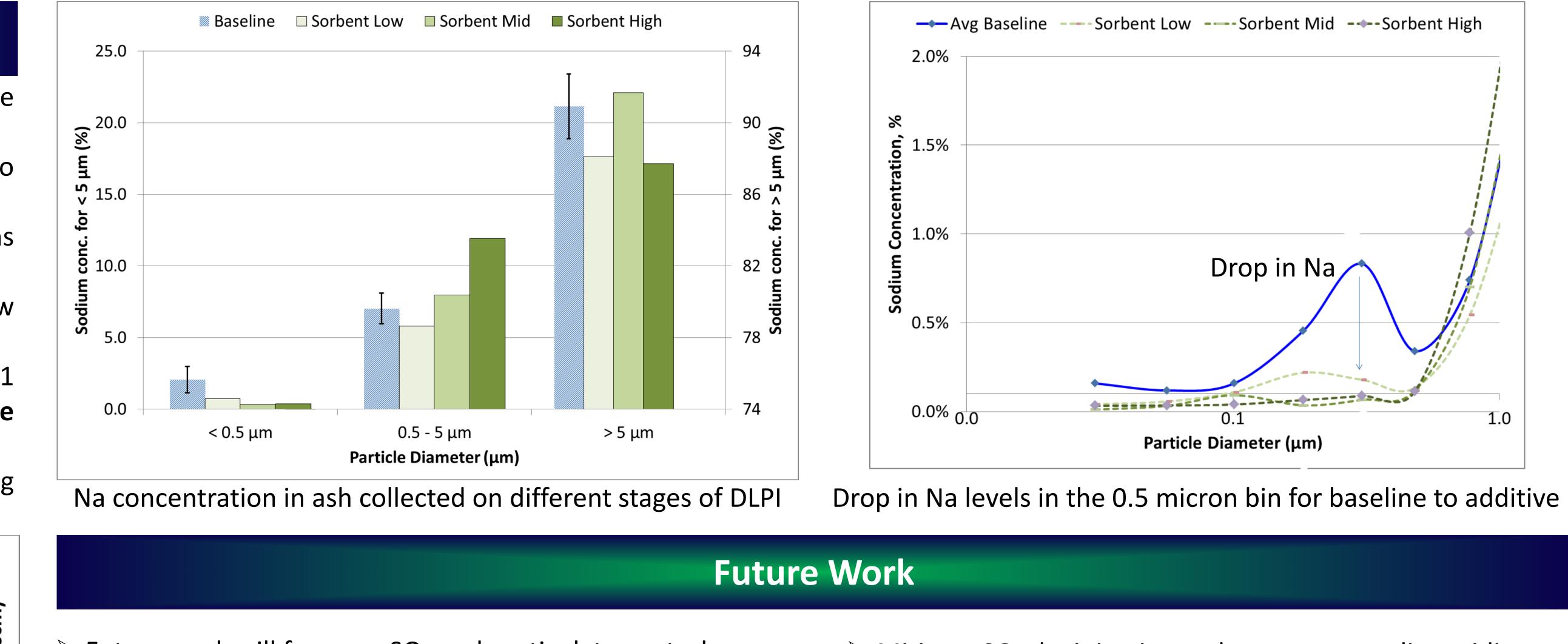

4

5

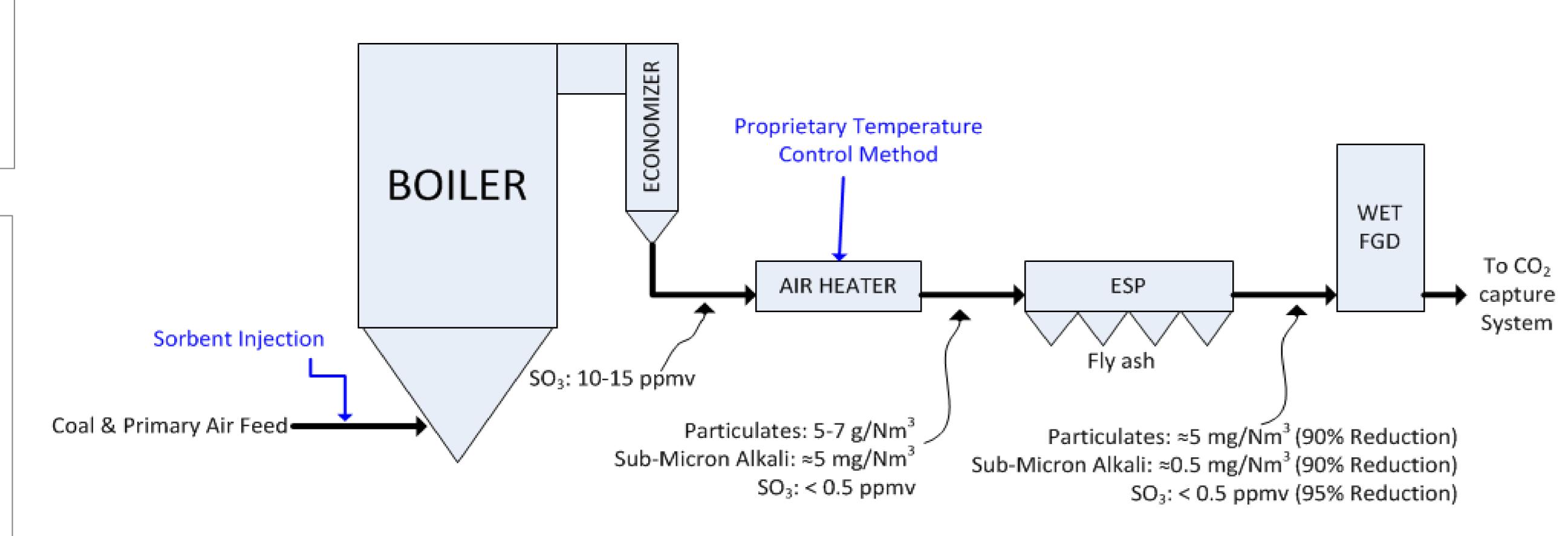
5-Stage SoRI/EPA Cyclone equipped with Back-Up Filter (left) and cut-points (right)




UND's 10 kW Down-Fired Coal Combustor


Results – Phase I

- > Three baseline runs were performed. The average particulate size distribution (PSD) was determined.
- > Sorbent runs showed a decrease in loading compared to baseline runs for the sub -0.5 micron size bin.
- > A corresponding increase observed in the larger size bins for the sorbent runs.
- \blacktriangleright Distribution within sub-0.5 micron bin shows how effective the sorbent is in reducing particulate loading
- \succ Sodium (Na) levels in the ash showed shift to larger (> 1 micron) range; 75% drop in the sub-micron range compared to baseline.
- Sorbent reducing ultra-fine particulate and concentrating alkali to larger size bins.

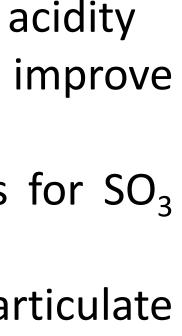


PSD for Baseline and Sorbent runs for the sub-0.5 micron size bin

- \succ Future work will focus on SO₃ and particulate control \succ SO₃ is also responsible for aerosol formation and fouli
- High SO₃ levels result in acid condensation in air pre-
- Low operating temperatures due to low load cyc result in acid condensation
- SO₃ that doesn't condense grows to form aerosols the particulate control devices

Acknowledgements

Project Manager: Isaac Aurelio, DOE STTR; DE-SC0015737


	> Mitigate	SO₂: by	injectin	g sorb	ents to neutral	ize a
ing:	•	5 -	•	•	operation	
e-heater	removal	of parti	culates a	and ne	utralized acid	
cling also	Perform	pilot te	esting to	o ident	ify best sorbe	ents
	capture					
ls later in	Perform	field	testing	to	demonstrate	par

capture, alkali, and SO₃ mitigation

Proposed Control Strategy for Aerosol Mitigation and Fouling due to Low Load Cycling

Srivats Srinivasachar, Envergex LLC Phone: (508) 347-2933; Mobile: (508) 479-3784; E-mail: srivats.srinivasachar@envergex.com

